ADAS and other autonomous driving technologies can apply automatic braking, park your car, adapt cruise control to road conditions, monitor blind spots, watch out for pedestrians, and more. These advanced functions are the result of innovations in embedded technology and chip design. 

To achieve the very best in this technology, however, chips must be designed specifically for self-driving cars or advanced driver-assist systems, and there are plenty of chipmakers doing just that: it’s a market expected to be worth $7.77 billion by 2025

Samsung

South Korean media has recently reported a partnership between Samsung and Google (Alphabet) in which Samsung will design chips for Google’s self-driving car via its Waymo subsidiary

Waymo

Waymo is Google’s autonomous ride-hailing service. Image used courtesy of Waymo
 

The collaboration between Samsung and Waymo will see the South Korean tech giant design and supply ICs that control all functions of the vehicle while computing data collected by its many sensors. The car will also communicate and exchange data with the Google data center in real-time. 

While details are scant at this time, Samsung is expected to leverage the very same state-of-the-art design and manufacturing processes that it has used to build chips on the 7nm and 5nm process nodes. 

Qualcomm

Qualcomm, the chipmaker that produces chips used in millions of smartphones, announced at the start of 2020 a new range of chips for self-driving cars that it optimistically claimed could be deployed in cars as soon as 2023. 

Known as Snapdragon Ride, the platform solution is designed specifically for autonomous driving and ADAS and is supported by three core “pillars:” Snapdragon Ride Safety SoCs, a Snapdragon Ride Safety Accelerator, and a Snapdragon Ride Autonomous Stack. 

Built on a 5nm process, the platform is said to offer sensor fusion and road world visualization

Built on a 5nm process, the platform is said to offer sensor fusion and road world visualization. Screenshot used courtesy of Qualcomm

The platform is built upon modular multi-core CPUs, artificial intelligence and computer vision engines, and GPUs. This enables it to support all levels of autonomous driving, from L1/L2 (driver assistance/partial automation, which we currently have in some vehicles) all the way to fully autonomous driving at L4/L5 (high/full automation). 

NXP Semiconductor

NXP Semiconductor is one of the largest providers of automotive chips and currently accounts for around 11% of the total market. While a large portion of these chips are used in applications like entertainment, infotainment, and in-vehicle networking systems, some are used in applications critical for self-driving such as radar, battery management, and advanced driver-assist systems (ADAS). 

NXP’s radar technology provides a scalable portfolio of integrated and secure products that are already used in real-world applications to aid with tasks like lane changing, parking, autonomous emergency braking, and adaptive cruise control. It uses several different chips to handle everything from power management (PF5200, FS8400) to high-performance radar imaging (S32R45). 

PF5200

Block diagram of the PF5200 dual-channel PMIC. Image used courtesy of NXP
 

NXP’s strength in the market is perhaps best illustrated by Qualcomm’s 2018 bid to buy the Dutch chipmaker. Regulatory issues derailed these plans, however. 

GlobalFoundries

GlobalFoundries recently announced a partnership with automotive supplier Bosch to develop radar chips for self-driving capabilities

As part of the deal, GlobalFoundries will develop high-frequency radar chips for Bosch at its Fab 1 facility in Dresden, Germany. The chips will be designed to operate at a much higher frequency than previous generations to help the radar detect objects that are farther away at a higher degree of accuracy than lower-frequency radar chips seen in current vehicles. 

Cleanroom of GlobalFoundries

Cleanroom of GlobalFoundries’ Fab 1 in Dresden, Germany. Image used courtesy of GlobalFoundries
 

GlobalFoundries said the chips are being targeted for delivery in the latter half of this year.

Chips as the Brains of ADAS

Chips act as the “brains” of advanced driver-assist systems, without which current autonomous driving achievements and tomorrow’s “self-driving” cars could not be feasible. This is exactly why the current chip shortage is hitting the automotive industry so hard; they’re an essential component in virtually every modern car, even at the most basic level.

However, many key chipmakers—including Intel, SK Hynix, and GlobalFoundries—have announced plans to expand fabrication plants in an effort to ameliorate the automotive chip shortage.

This post was first published on: All About Circuits